If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=300+10t-4.9t^2
We move all terms to the left:
0-(300+10t-4.9t^2)=0
We add all the numbers together, and all the variables
-(300+10t-4.9t^2)=0
We get rid of parentheses
4.9t^2-10t-300=0
a = 4.9; b = -10; c = -300;
Δ = b2-4ac
Δ = -102-4·4.9·(-300)
Δ = 5980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5980}=\sqrt{4*1495}=\sqrt{4}*\sqrt{1495}=2\sqrt{1495}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1495}}{2*4.9}=\frac{10-2\sqrt{1495}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1495}}{2*4.9}=\frac{10+2\sqrt{1495}}{9.8} $
| 7(n-7)=63 | | (3u+14)/5=2u | | ^2-6x+20=38 | | 16+4=18x | | 3b^2+8b=0 | | 3x+9=−39 | | 3n+4n=5n+33 | | x+(x+110)+(x+25)=180 | | 3(2x+1)=-4(x-7) | | 1/9x+3=14 | | 60÷n=13 | | 5-7i=0 | | 3.7x-12.2=2.6 | | 2x+64=98 | | 5=x/10+6 | | 16-2=t+9+4 | | 4.9x-4.1=10.6 | | 3-3c=24 | | 6w-3.1=16.1 | | 15x+3x-12=96 | | -1.4=6.1+v/3 | | 3=k/2+9 | | -4.75=y/7+4 | | 57+(4x-9)+(8x-42)=180 | | 15.9-8y=3.1 | | 5x/3+4=12 | | y/6-2.3=-11.9 | | 5xx/3=25/3 | | 8+4x=46 | | 11=v/5.12+7 | | 2y-1=3y+4 | | 3y+(-8y)+9-(-4)=35 |